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Summary

1. Spatial patterns of community composition turnover (beta diversity) may bemapped through generalised dis-

similarity modelling (GDM). While remote sensing data are adequate to describe these patterns, the often high-

dimensional nature of these data poses some analytical challenges, potentially resulting in loss of generality. This

may hinder the use of such data formapping andmonitoring beta-diversity patterns.

2. This study presents Sparse Generalised Dissimilarity Modelling (SGDM), a methodological framework

designed to improve the use of high-dimensional data to predict community turnover with GDM. SGDM con-

sists of a two-stage approach, by first transforming the environmental data with a sparse canonical correlation

analysis (SCCA), aimed at dealing with high-dimensional data sets, and secondly fitting the transformed data

withGDM.The SCCApenalisation parameters are chosen according to a grid search procedure in order to opti-

mise the predictive performance of aGDMfit on the resulting components. The proposedmethodwas illustrated

on a case study with a clear environmental gradient of shrub encroachment following cropland abandonment,

and subsequent turnover in the bird communities. Bird community data, collected on 115 plots located along the

described gradient, were used to fit composition dissimilarity as a function of several remote sensing data sets,

including a time series of Landsat data as well as simulated EnMAPhyperspectral data.

3. The proposed approach always outperformedGDMmodels when fit on high-dimensional data sets. Its usage

on low-dimensional data was not consistently advantageous. Models using high-dimensional data, on the other

hand, always outperformed those using low-dimensional data, such as single-datemultispectral imagery.

4. This approach improved the direct use of high-dimensional remote sensing data, such as time-series or hy-

perspectral imagery, for community dissimilarity modelling, resulting in better performing models. The good

performance of models using high-dimensional data sets further highlights the relevance of dense time series

and data coming from new and forthcoming satellite sensors for ecological applications such as mapping spe-

cies beta diversity.

Key-words: biodiversity, community modelling, EnMAP, generalised dissimilarity modelling,

hyperspectral data, Landsat, remote sensing, sparse canonical correlation analysis, time-series, turn-

over

Introduction

Recent global reduction in biodiversity is widely acknowl-

edged, with direct impacts on ecosystem functioning and its

provisioning of services (Cardinale et al. 2012). However,

existing patterns of biodiversity and most particularly those of

community composition turnover, or beta diversity, are little

known (Ferrier et al. 2002; McKnight et al. 2007). A deeper

knowledge of these patterns can provide insights into the eco-

logical processes determining species and community distribu-

tions, such as the identification of ecological tipping points or

of vulnerable taxonomic groups (Guerin, Biffin& Lowe 2013).

This can also support well-informedmanagement practices for

mitigating biodiversity declines. While beta diversity is not a

new concept (Whittaker 1960) and closely relates to that of

ecological complementarity (Faith et al. 2003), its importance

has received growing attention, particularly due to its implica-

tions for biodiversity conservation and ecosystem functioning

(Hooper et al. 2005; Legendre, Borcard&Peres-Neto 2005).*Correspondence author. E-mail: p.leitao@geo.hu-berlin.de
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Many studies have dealt with the description of beta diver-

sity and its measurement. A commonly used approach is one

of data ordination, such as canonical correlation analysis

(Legendre, Borcard & Peres-Neto 2005). In this approach,

the community data are transformed by incorporating envi-

ronmental variables of interest as constraints for the ordina-

tion, which also allows the inference of species–environment

relationships (Legendre & Gallagher 2001). Another com-

mon approach for analysis of beta diversity is through dis-

similarity measures of the community data (Ferrier et al.

2007; Tuomisto 2010; De Caceres, Legendre & He 2013).

Ferrier et al. (2007) introduced an approach called general-

ised dissimilarity modelling (GDM), which is suitable for

modelling and mapping spatial patterns of community com-

position turnover. In this approach, the compositional dis-

similarity between all pairs of samples is modelled as a

function of environmental distance, using a linear combina-

tion of I-spline basis functions. The model architecture con-

strains the fitted functions to be monotonic, with the

assumption that increasing separation of sites along an envi-

ronmental gradient can only result in increasing composi-

tional dissimilarity (Ferrier et al. 2007). The spatial pattern

in community compositional change predicted by GDM can

then be visualised through the nonlinear ordination of the

predicted dissimilarities between location pairs.

Remotely sensed data, by repeatedly describing the Earth’s

surface in a synoptic and detailed manner, are suitable for

monitoring ecological processes (Kerr & Ostrovsky 2003;

Turner et al. 2003). The global extent and timely coverage of

these data make them particularly suitable for continuous

large area ecosystem monitoring (Griffiths et al. 2012; Hansen

et al. 2013). Moreover, the opening of the Landsat data

archive and the advent of new global monitoring satellites,

such as NASA’s Landsat 8 (operational since May 2013), the

European Space Agency’s Sentinel missions (launches due

between 2013 and 2015) and the German hyperspectral

EnMAP mission (launch due in 2017), further enhances the

potential of this data source (Kennedy et al. 2014). While

choosing the right remote sensing data or product is not always

an easy matter (Cord et al. 2013), making full use of the con-

tinuous information of such data (i.e. unclassified remote sens-

ing data or derived products) has been shown to be

advantageous in several studies on species distributions

(Osborne, Alonso & Bryant 2001; Parviainen et al. 2013; Cord

et al. 2014). Indeed the spatial variation of the reflection signal

closely describes the spatial patterns of vegetation and other

landscape features which might determine species occurrence

and abundance patterns. Measures of heterogeneity and dis-

tance of remotely sensed spectra have been successfully used

for characterising species alpha and beta diversities (Rocchini

2007; Feilhauer & Schmidtlein 2009; Rocchini et al. 2010; Bal-

deck & Asner 2013). On the other hand, the high-dimensional

(and potentiallymulticollinear) nature of these data poses chal-

lenges for their analysis (Dormann et al. 2013), potentially

resulting in lack of performance and generality.

An advance in dealing with high-dimensional data sets is

sparse canonical correlation analysis (SCCA;Witten, Tibshira-

ni & Hastie 2009), a form of regularised ordination. This

method stems fromgenetics researchwhere the number of vari-

ables is typically much greater than the number of samples

(Witten&Tibshirani 2009),whichparallels the analysis of high-

dimensional remote sensing data. SCCA is based on the least

absolute shrinkageand selectionoperatororLASSO(Tibshira-

ni 1996), a regularisation approach aimed at optimising perfor-

mance while reducing model complexity through penalisation

(Reineking & Schr€oder 2006). In the LASSO regression, the

sum of the absolute values (L1-norm) of the parameter

estimates is used for penalisation, which encourages sparse

solutions via shrinkage of coefficients towards zero, effectively

selecting features (Tibshirani 1996;Tibshirani et al.2005).

In this study, we present a methodological approach for

improving the usage of GDM for fitting patterns of beta diver-

sity, by addressing the issues of high-dimensionality data when

using (unclassified) spaceborne spectral data. This method

consists of fitting sparse canonical components (extracted

through a SCCA) in a GDM, hereafter referred to as Sparse

GeneralisedDissimilarityModelling or SGDM.

We tested this approach using data from a Mediterranean

region in southern Portugal, where a spatial and environmen-

tal gradient of shrub encroachment following land abandon-

ment results in a progressive transition from open farmland

fields to dense shrublands and forests (Moreira et al. 2007).

This encroachment affects the structure and functioning of the

ecosystem (Eldridge et al. 2011), including the compositional

turnover in the existing bird communities (Leit~ao, Moreira &

Osborne 2010).

The predictive performance of SGDM was compared with

that of GDM using several high- and low-dimensional remote

sensing data sets, including single date and time series of multi-

spectral Landsat TM data and (simulated) hyperspectral En-

MAP data. All code necessary to run the presented approach

is provided (seeData S1), including several general GDMtools

(e.g. the calculation of variable contribution significance, and

the leave-one-out cross-validated performance), and some

specific SGDM functions.

Materials andmethods

SPARSE GENERALISED DISSIMILARITY MODELL ING

The SGDM approach requires the input of two data matrices, one of

species occurrence or abundance data and one of environmental vari-

ables, in a canonical correspondence analysis manner. It consists of

initially transforming (and in this way reducing) high-dimensional

environmental data by means of a SCCA (Witten, Tibshirani & Has-

tie 2009; Fig. 1), in order to maximise the correlation between trans-

formed environmental and species data. The SCCA, being a form of

penalised canonical correlation analysis, applies the L1 (lasso) penalty

function on the data matrices to resolve the sparse canonical vectors

which can then be applied to ordinate the data. The penalty to be

applied to each data matrix (the L1 bound on the respective canonical

vector) is in the form

c_1||u||_1ncol(x)forx,

c_2||v||_1ncol(y)fory,
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which assumes values between 0 and 1 (larger L1 bound cor-

responds to less penalisation) and ncol is the number of columns of

the input matrix x. The SCCA requires the definition of two penali-

sation parameters, one for each of the data matrices (species and

environmental). In SGDM, these are chosen via a heuristic grid

search of all possible penalisation parameter pair combinations, in

order to maximise the resulting GDM predictive performance. Effec-

tively, for each penalisation pair combination, the resulting sparse

canonical components are extracted and subsequently used for

GDM, and the respective model performance inspected in a leave-

one-out cross-validation procedure (i.e. by leaving out one site and

all corresponding site pairs at each time). The parameter pair which

results in higher GDM performance (in the form of the lowest root-

mean-square error) is then selected, and the resulting components

used for further GDM analysis. All analyses were run in R (R

Development Core Team 2013) using several packages as described

below.

In the proposed implementation of the SCCA parameterisation,

which is run with the package PMA (Witten, Tibshirani & Hastie

2009), the type of data is set as ‘standard’ (for unordered data col-

umns), a default 0�1 incremental step is given for the parameter

grid search (although this can be manually defined), and the analy-

sis is repeated in 50 iterations for algorithmic convergence. The

number of sparse components to be extracted needs to be defined

a priori, which we set as the maximum number of possible compo-

nents, that is the minimum number of columns (species or envi-

ronmental variables) between both matrices. The GDM model is

run with the packages GDM4TABLES (freely available at https://

sites.google.com/site/gdmsoftware/) and additional code from the

package GDM01, under development at the R-Forge SCM reposi-

tory (Ferrier et al. 2007). The dissimilarity metric to be used in the

GDM needs to be defined. Here we used the default Bray–Curtis

dissimilarity (Bray & Curtis 1957), which is widely used for count

data.

The following step in the proposed approach is one of data reduc-

tion, to assuremodel parsimony. This is done by testing the significance

of the input variable (sparse components) contribution, throughmatrix

permutation, subsequently eliminating the non-significant variables

(Ferrier et al. 2007). This step makes use of the packages GDM4TABLES,

GDM01, VEGAN (Oksanen et al. 2012) and ECODIST (Goslee & Urban

2007).

For the purpose of beta-diversity mapping, the final GDM model

can be applied to predict the dissimilarities between all sample pairs,

and the predicted dissimilarities transformed to summarise most of the

variability into few dimensions. The resulting transformed data can

then be plotted in a map representing the patterns of community turn-

over (Ferrier et al. 2007).

CASE STUDY

In order to demonstrate the SGDM approach, we tested it on a study

site around the towns of Castro Verde andM�ertola in southern Portu-

gal, along a gradient of shrub encroachment and subsequent bird

community transition (Fig. 2). Extensive traditional agricultural prac-

tices in the region result in typical pseudo-steppe landscapes. These

are characterised by dominant fallow grasslands, usually grazed by

sheep (Moreira 1999), and a spatio-temporal mosaic of winter cereal

crops, ploughed and stubble fields. Scattered rockrose (Cistus sp.)

shrub patches are also common, mostly associated with rock outcrops

or areas covered by shallow or skeletal soils and with the river valleys,

as well as some areas of sparse, savanna-like holm oak (Quercus rotun-

difolia) woodlands. Agricultural land abandonment, however, has led

to increasing shrub encroachment on fallow lands, which is particu-

larly notable in the south-east of the study area (Schwieder et al.

2014). In contrast, the north-western half of the area lies within a des-

ignated Special Protection Area (SPA) for birds, where a directed

agri-environmental scheme sets land-use incentives to keep traditional

agricultural practices. This fosters the conservation of the local biodi-

versity, in particular a steppe bird community (Moreira et al. 2007),

thus helping to maintain the pseudo-steppe mosaic within the SPA.

By having strong habitat associations, the existing bird communities

are directly affected by changes in the landscape (Leit~ao, Moreira &

Osborne 2010; Moreira et al. 2012). The observed gradient of increas-

ing shrub encroachment, while potentially having beneficial effects on

several ecosystem functions (e.g. soil protection against desertification;

Marta-Pedroso et al. 2007; Eldridge et al. 2011), also results in a turn-

over of the bird assemblage composition, from the steppe bird commu-

nity to one typical of Mediterranean shrublands (Moreira & Russo

2007; Leit~ao,Moreira &Osborne 2010).

We thus propose to model and map the region’s bird community

turnover along the shrub encroachment gradient by using a purposively

collected species matrix and several high- and low-dimensional (remote

sensing) environmental data sets, as described below.

DATA

Bird community data were collected in April 2011, according to a stra-

tified sampling scheme, capturing a good geographical and successional

representation of the study area (Leit~ao, Moreira & Osborne 2011).

For this purpose, we defined six different landscape structural classes,

with varying degrees of composition and configuration of woody vege-

tation, this way characterising the existing shrub encroachment gradi-

ent, from grasslands to fully established shrublands with successional

tree cover. We also split the study region into geographical sections to

ensure that all structural classes were covered on all sections, thus gua-

Fig. 1. Schematic workflow of the presented

approach for the reduction of remote sensing

data through a sparse canonical correlation

analysis for generalised dissimilarity model-

ling. The resulting predicted dissimilarities can

be subject to a data ordination for generating

a beta-diversity map (shown with the dashed

lines).
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ranteeing a good representativeness of the variability found (Fig. 2).

Bird assemblages were sampled using 10-min duration counts on circu-

lar plots with a 125 m distance limit (Fuller & Langslow 1984). All bird

censuses were carried out during the birds’ period of peak-activity, that

is the early morning (first 4 h after sunrise) and evening (last 2 h before

sunset) during the breeding season, and all visual and auditory bird

observationswere registered. Bird species not directly using the relevant

(grassland to shrubby) habitats or those for which the sampling was

not adequate (e.g. most raptors or aquatic birds) were excluded from

the analysis. In total, 42 species were considered for modelling (see

Table S1).

Several remote sensing data sets were used as environmental data to

be tested with GDM and SGDM. We used a time series of Landsat-5

ThematicMapper (TM) data from the year of 2011, acquired on six dif-

ferent dates between January and September (Julian dates 31, 79, 143,

175, 207 and 255) over our study area (path/row: 203/34; United States

Geological Survey 2013). Only the six optical bands of the TM sensor

were considered. All data were standard terrain corrected (L1T), and

were further subject to radiometric and atmospheric correction using

the Landsat Ecosystem Disturbance Adaptive Processing System

(LEDAPS) algorithm (Masek et al. 2006). Both the time series (high

dimensional) and the individual single-date (low dimensional) data

were used for modelling.We also used simulated EnMAP (high dimen-

sional) hyperspectral data (Stuffler et al. 2007; Segl et al. 2012), based

on highly resolved airborne hyperspectral data (400–2500 nm)

acquired in April and August of 2011 (Julian dates 097 and 223) over

the study region (Schwieder et al. 2014). The simulated EnMAP data

were also further (spectrally) resampled into Landsat TMdata for both

dates. This step guarantees a comparable low-dimensional data set to

the simulated EnMAP data – contains similar artefacts derived from

data preprocessing or varying view angle effects (of the airborne imag-

ery) and excludes any spectral changes due to phenological differences.

Additionally, we created a land-cover map of the region through classi-

fication of the TM time series, by means of a support vector machine

(SVM) classifier. We defined land-cover classes strongly associated

with the habitat guilds of the local bird communities (Leit~ao, Moreira

& Osborne 2010): (i) bare soil, (ii) cereal, (iii) grasslands, (iv) wood-

lands, (v) shrublands and (vi) water. This classification achieved high

classification accuracy (overall accuracy of 91�37%; for more details

see Table S2) and can thus be considered a high-quality reference prod-

uct for use as input in our models. The SVMmodels were run with the

IMAGESVM package (Rabe, van der Linden & Hostert 2010), based on

the LIBSVM library (Chang & Lin 2011) and implemented in the En-

MAPBox (Rabe et al. 2012).

All data were compiled to the 125-m radius circular plot level, equi-

valent to the grain of the bird sampling data (see Table 1). Plot-based

average and standard deviation of each individual spectral band were

calculated for all Landsat and EnMAPdata. Fractions of cover of each

class within each plot were calculated from the land-cover map, as well

as the number of different classes and the respective Simpson’s richness

index (Simpson 1949) in a plot. This was done for each bird sampling

location (centred in the exact plot location) and for each image pixel

(centred in themid-pixel coordinate).

DATA ANALYSIS

We ranGDMand SGDMmodels on all data sets: the low-dimensional

single-date Landsat TMand land-cover data, and the high-dimensional

Landsat time series and EnMAP hyperspectral data. All models were

reduced based on variable contribution significance (P-value <0�05).
We used the Bray–Curtis dissimilarity metric on all models and did not

use the geographical distance as a predictor. The SCCA penalisation

parameter grid search was done in 0�1 steps, in a total of 121 possible

parameter pair combinations (11 steps for each penalisation parame-

ter). We extracted as many sparse components as possible (i.e. equals

the minimum number of variables from both species and environmen-

tal matrices) and used the significant ones as finalmodel input.

For the model validation, we extracted a portion (15 samples) of the

data in a stratified randommanner, following a sparse k-means cluster-

ing approach as implemented in R package sparcl (Witten & Tibshirani

2010). All (GDM and SGDM) models were thus built on 100 samples

and validated against the remaining samples. This process was iterated

three times and the model performance was assessed in the form of the

mean (from the three iterations) coefficient of determination (r2)

between observed and predicted values.

To illustrate the use of SGDM for beta-diversity mapping, we used

the model on time-series Landsat data to generate a community transi-

tion map. For this purpose, the predicted dissimilarities for all sample

pairs were transformed using Non-metric Multi-Dimensional Scaling

(NMDS; Kruskal 1964). We extracted three NMDS axes, and the fac-

tors of these ordinates were then applied to the predicted dissimilarities

between the samples and each image pixel (compiled to plot level). Plot-

ting these axes in the red (R), green (G) and blue (B) channels of a

Fig. 2. Study area, including the bird sam-

pling locations (black stars), the Castro Verde

Special Protection Area limits (yellow line)

and the land cover. The town of Castro Verde

ismarkedwith a black circle.
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colour image results in a map which illustrates the main community

transitions in the study region, where colour changes represent the level

of dissimilarity in bird assemblages.

Results

When using low-dimensional data sets, such as single-date

multispectral data or land-cover information, the SGDM

approach was not consistently successful in improving model

performances when compared with GDM. On the other hand,

when applied on high-dimensional data sets, the SGDM

approach always outperformed the GDM, with model

improvements as high as 66% of the original performance

(Table 1).

The direct use of remotely sensed spectral (reflectance) data

in the models was advantageous in comparison with the use of

land-cover data derived from the same data, with a mean per-

formance improvement of 21% on GDMmodels and 12% on

SGDM models. Indeed, the continuous nature of these data

closely follows the gradual changes in natural ecosystems over

space and time and thus is highly suitable for describing spatial

ecological patterns (Foody 1992).

The performance of the single-date models (onmultispectral

Landsat TMdata) varied throughout the different time periods

on both methods. The use of SGDM on these data sometimes

(but not consistently) resulted in model performance improve-

ments.

Models built on time-series data were always better per-

forming than those built on single-date imagery. Observed

model improvements ranged from 5% to 166% for GDM

models and from 30% to 256% for SGDM models (depend-

ing on the date). The use of the SGDM approach on the

time-series data resulted in an improvement of 7% in model

performance, when compared with the respective GDM

models.

The availability of higher spectral information, using hyper-

spectral instead of multispectral data, was shown to be advan-

tageous for describing the observed bird communities. Model

improvements when using these data were up to 37% with

GDM and 92% with SGDM. The SGDM models on hyper-

spectral data for both dates consistently improved perfor-

mance in relation to the GDM models, with improvement of

up to 66%.

Moderate to low levels of shrinkage on the SCCA (from

0�4 to 1) seemed to be able to deliver good improvements in

model performance in comparison with the respective GDMs.

This was particularly the case for models run on high-dimen-

sional data, for example simulated EnMAP data for August,

with selected penalisation parameters of 0�9 on the species

matrix and 0�4 on the environmental matrix. This penalisation

still resulted in the use of information from all 42 species and

292 spectral variables in the calculation of the (42) sparse

components extracted. The significance test further reduced

these into 23 components, however, containing information

on all available species and environmental (spectral) variables.

In the predicted community transition map (Fig. 3), the

three first NMDS axes represent themain species turnover pat-

terns. A close inspection of the data samples against the ordi-

nation map allows the interpretation of the observed species

turnover in the region. Indeed, areas with high values in the

first axis, that is the red channel (represented in the map in red,

pink and yellow colours), are typical pseudo-steppe areas, with

Table 1. Generalised dissimilaritymodelling (GDM) and SparseGeneralisedDissimilarityModelling (SGDM)model results: number of significant

variables used in the GDMmodels, GDMmodel performance (r2), penalisation parameters selected for the species matrix (px) and for the environ-

mental matrix (pz), number of significant sparse canonical components used in the SGDM models (SCCs), number of species considered in the

resulting components, number of original variables considered in the resulting components and SGDM model performances. The values under

parenthesis refer to the respective accounts before eliminating non-significant variables. In the cases when SGDM resulted in a model performance

improvement, these weremarked in bold

Dataset

GDM SGDM

Variables Performance (r2)

Penalisation

Sparse canonical correlation

analysis results

Performance (r2)px pz SCCs Species Variables

Low-dimensional data sets

Land-covermap 5 (8) 15�6 0�7 0�5 3 (8) 42 (42) 7 (8) 18�0
Landsat TMJanuary 8 (12) 17�9 0�3 0�5 7 (12) 20 (25) 12 (12) 15�4
Landsat TMMarch 6 (12) 7�1 0�2 0�8 4 (12) 10 (22) 12 (12) 8�0
Landsat TMMay 6 (12) 15�1 0�9 0�5 4 (12) 42 (42) 12 (12) 10�0
Landsat TMJune 5 (12) 7�2 0�7 1�0 5 (12) 42 (42) 12 (12) 12�1
Landsat TMJuly 4 (12) 9�1 0�7 0�4 4 (12) 42 (42) 8 (12) 10�3
Landsat TMSeptember 4 (12) 8�6 0�3 0�0 5 (12) 18 (19) 5 (5) 5�7
Landsat TMsimApril 6 (12) 6�5 0�2 0�5 6 (12) 13 (19) 12 (12) 7�5
Landsat TMsimAugust 3 (12) 6�4 0�2 0�0 3 (12) 4 (12) 3 (7) 5�5

High-dimensional data sets

Landsat TM time series 28 (72) 18�8 0�8 0�9 14 (42) 42 (42) 72 (72) 20�1
EnMAPsimApril 215 (292) 8�9 0�8 0�4 21 (42) 42 (42) 292 (292) 11�0
EnMAPsimAugust 239 (292) 6�4 0�9 0�4 23 (42) 42 (42) 292 (292) 10�6

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 764–771
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the occurrence of species such as little bustard Tetrax tetrax or

calandra larkMelanocopypha calandra. High values in the sec-

ond NMDS axis (displayed in the green channel) represents

areas suitable for species adapted to Mediterranean shrub

environments, such as red-legged partridge Alectoris rufa,

sardinian warbler Sylvia melanocephala or Dartford warbler

Sylvia undata. High values in the third axis (blue channel)

represent areas suitable for birds more adapted to fragmenting

elements in the steppe mosaic, such as riparian galleries,

holm oak woodlands or small farm gardens, such as Iberian

azure-winged magpie Cyanopica cooki or stonechat Saxicola

torquata.

The predicted community transition map agrees well with

the expected spatial patterns, enabling a meaningful ecological

interpretation. For example, we observed the presence of the

steppe bird community mainly within the borders of the SPA

of Castro Verde as opposed to the dominance of a shrub bird

community outside where land abandonment prevails and

encroachment is aggravated. By adding new knowledge on the

detailed patterns of the community transitions in the study

region, this example serves well to illustrate the usefulness of

the SGDM for modelling and mapping beta diversity with

high-dimensional data.

Discussion

Global environmental change is ongoing, leading to dra-

matic biodiversity reduction and disturbances in ecological

balance with impacts on ecosystem functioning and the pro-

vision of ecosystem services (Cardinale et al. 2012). Existing

and forthcoming new generation global monitoring Earth

observation satellites will provide large amounts of high

temporally and spectrally resolved data, thus describing the

Earth’s surface with unprecedented detail. The full depth of

these data, such as time series of multispectral or hyperspec-

tral data, although potentially containing suitable informa-

tion for describing the spatial patterns of beta diversity over

large areas, poses challenges for analyses due to their high-

dimensional nature.

In this study, we propose a methodological approach

which improves the use of high-dimensional (remote sensing)

data for modelling biotic communities dissimilarity and

turnover via GDM. The Sparse Generalised Dissimilarity

Modelling approach (or SGDM) consists of transforming

and thus reducing the high-dimensional environmental data

through a SCCA (using the species data as ordination con-

straint), before fitting them with GDM. In this approach, the

Lasso-based SCCA (suited for high-dimensional data reduc-

tion) (Witten, Tibshirani & Hastie 2009) is parameterised in

order to optimise the subsequent GDM performance (in-built

in the parameter grid search). The underlying principle of the

method is that as the ordination of the environmental data is

constrained by the species matrix, the resulting components

are associated with the variability (i.e. turnover) in the com-

munity, thus making them suitable for modelling its dissimi-

larity in GDM.

When run on high-dimensional data sets such as a time ser-

ies of Landsat TM data or simulated EnMAP hyperspectral

data, the SGDM consistently outperformed the classical

GDM on the same data. In these cases, while there were data

reduction through the SCCA ordination (e.g. 72 time-series

variables were reduced into 42 sparse canonical components),

the extracted components effectively compiled information

from all original spectral variables. This was also observed in

the cases of the extreme high-dimensional hyperspectral data

sets, on which the greater dimension reduction (from 292 vari-

ables to 42 components) was translated into greater penalisa-

tion of the environmental matrix (lower L1 bound, in the case

0�4 for both hyperspectral data sets instead of 0�9 for the time-

series data), while still keeping information from all original

variables. This remained so even after the exclusion of the non-

significant variables in theGDM.

Fig. 3. Example of species compositional

turnover mapping in the study area with

Sparse Generalised Dissimilarity Modelling

based on Landsat time series. The predicted

dissimilarities between the sample plots were

transformed with Non-metric Multi-Dimen-

sional Scaling. The resulting three axes were

applied to the image and visualised on the red,

green and blue channels. Roads are repre-

sented by the grey lines, the limits of the Cas-

tro Verde Special Protection Area by the

yellow line and the Castro Verde town by

black circle.
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As the ordination is used to extract meaningful informa-

tion from the environmental matrix which is capable of

describing the community dissimilarity patterns, high levels

of penalisation on the species matrix (determining the down-

weighting and potential exclusion of some species) should be

avoided in order to assure a strong association between the

transformed environmental data and the (full) community

data. Indeed, the selected parameters on these (high-dimen-

sional data) models ranged from 0�8 to 0�9 reflecting low

penalisation levels. The current code implementation assumes

a regular grid of parameter values for both matrices,

although this could be adapted in order to for example

restrict extreme low L1 values (high penalisation) on the spe-

cies matrix.

When run on low-dimensional data sets, for which the

SCCA is not well suited, the method showed very ambig-

uous results, with model performance improvements of up

to 69% but also decreases in performance of up to 35%,

depending on the data used. Also, the selected penalisa-

tion parameters varied from extremely high to extremely

low (e.g. from 0�0 to 1�0 on the environmental data) and

with no clear association between these and the resulting

model performances. We thus consider the SGDM

method as unsuitable for these cases.

While Lasso penalisation does not correct for heteroscedas-

ticity (Jia, Rohe & Yu 2013), potentially resulting in sensitivity

to high variance species in the SCCA, our tests showed that the

SGDM is able to cope well with count data and delivers better

results than GDM (for high-dimensional data). However, the

usage of the method under extreme heteroscedasticity could

result in weaker model performances. Also, although GDM

allows the input of presence/absence dissimilarity measures,

the applicability of the SGDM approach on occurrence data

remains untested.

We thus conclude that SGDM is suitable for use as an alter-

native to GDM for high-dimensional environmental data sets

(e.g. when the number of environmental variables exceeds the

number of species), such as time series or high spectrally

resolved remote sensing data. Furthermore, SGDM may be

applied on repeatedly acquired (remote sensing) data to moni-

tor (through prediction) changes in biodiversity in almost real-

time.
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